三、归纳法
当我们要解决一个问题的时候,可以先分析这个问题的几种简单的、特殊的情况,从中发现并归纳出一般规律或作出某种猜想,从而找到解决问题的途径。这种从特殊到一般的思维方法称为归纳法。
例10 将100以内的质数从小到大排成一个数字串,依次完成以下5项工作叫做一次操作:
(1)将左边第一个数码移到数字串的最右边;
(2)从左到右两位一节组成若干个两位数;
(3)划去这些两位数中的合数;
(4)所剩的两位质数中有相同者,保留左边的一个,其余划去;
(5)所余的两位质数保持数码次序又组成一个新的数字串。
问:经过1999次操作,所得的数字串是什么?
解:第1次操作得数字串711131131737;
第2次操作得数字串11133173;
第3次操作得数字串111731;
第4次操作得数字串1173;
第5次操作得数字串1731;
第6次操作得数字串7311;
第7次操作得数字串3117;
第8次操作得数字串1173。
不难看出,后面以4次为周期循环,1999=4×499+3,所以第1999次操作所得数字串与第7次相同,是3117。
例11 有100张的一摞卡片,玲玲拿着它们,从最上面的一张开始按如下的顺序进行操作:把最上面的第一张卡片舍去,把下一张卡片放在这一摞卡片的最下面。再把原来的第三张卡片舍去,把下一张卡片放在最下面。反复这样做,直到手中只剩下一张卡片,那么剩下的这张卡片是原来那一摞卡片的第几张?
分析与解:可以从简单的不失题目性质的问题入手,寻找规律。列表如下:
设这一摞卡片的张数为N,观察上表可知:
(1)当N=2a(a=0,1,2,3,…)时,剩下的这张卡片是原来那一摞卡片的最后一张,即第2a张;
(2)当N=2a+m(m<2a)时,剩下的这张卡片是原来那一摞卡片的第2m张。
取N=100,因为100=26+36,2×36=72,所以剩下这张卡片是原来那一摞卡片的第72张。
说明:此题实质上是著名的约瑟夫斯问题:
传说古代有一批人被蛮族俘虏了,敌人命令他们排成圆圈,编上号码1,2,3,…然后把1号杀了,把3号杀了,总之每隔一个人杀一个人,最后剩下一个人,这个人就是约瑟夫斯。如果这批俘虏有111人,那么约瑟夫斯的号码是多少?



